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Gyrokinetic turbulence simulations are presented with full drift-kinetic electron dynamics including
both trapped and passing particle effects. This is made possible by using a generalization of the
split-weight scheme �I. Manuilskiy and W. W. Lee, Phys. Plasmas 7, 1381 �2000�� that allows for
a variable adiabatic part, as well as use of the parallel canonical momentum formulation. Linear
simulations in shearless slab geometry and nonlinear simulations using representative tokamak
parameters demonstrate the applicability of this generalized split-weight scheme to the turbulence
transport problem in the low � regime ��(mi /me)�1� . The issues relating to difficulties at higher
� , and initial three-dimensional toroidal simulations results will be discussed. © 2001 American
Institute of Physics. �DOI: 10.1063/1.1351828�

I. INTRODUCTION

Accurately modeling the electron physics is currently a
primary challenge in turbulence simulation research. Up un-
til recently, the vast majority of three-dimensional simula-
tions in realistic geometries have been using the adiabatic
electron approximation. Recently, a split-weight scheme has
been proposed for the treatment of kinetic electrons in gyro-
kinetic simulations.1 The scheme, which is based on the � f
method, splits the kinetic electron response into adiabatic
and nonadiabatic parts. The separation of the adiabatic part
introduces another moment equation, derived from the gyro-
kinetic Poisson equation, into the scheme. However, this
separation allows us to circumvent the restriction of the Cou-
rant condition2 on the time step. The validity of the scheme
has been demonstrated in a one-dimensional �1-D� electro-
static simulation for the drift waves. It is of immediate inter-
est to study the efficacy of this scheme in the more compli-
cated problem of three-dimensional �3-D� toroidal
simulations with electromagnetic perturbations, which is the
purpose of the present article.

The magnetic perturbation considered in this article is
given by a parallel vector potential A � , �B��“A ��b,
where b is the unit vector along the equilibrium magnetic
field. It is known that the inductive component of the electric
field perturbation, �A � /�t , introduces a numerical difficulty
in particle simulation, which has lead to two approaches in
previous simulations.3 The first approach employs a general-
ized Ohm’s law to calculate the parallel electric field.4 More
recent simulations usually use the second approach which
uses the parallel canonical momentum formulation to elimi-
nate �A � /�t from the equations.5–7 Both approaches can be
adopted in the split-weight scheme and are considered in this
article. Here, we formulate a generalized split-weight scheme
where the adiabatic part �either p � or v �), as well as com-

parisons with exact linear theory to determine the best per-
forming approach. Finally, we show initial nonlinear toroidal
results which demonstrate the new kinetic electron physics
capability.

The article is organized as follows: In Sec. II we present
a generalized electromagnetic split-weight scheme using
both the p � and the v � formulations. Methods for implemen-
tation are given in Sec. III. In Sec. IV the numerical scheme
is tested for both the shearless slab, where detailed compari-
son with dispersion relation is possible, and the toroidal flux-
tube geometry, showing that at low � , the nonadiabatic elec-
tron effect of interest can be adequately addressed using the
split-weight scheme. Main conclusions of the article are
given in Sec. V.

II. THE SPLIT-WEIGHT SCHEME

We start with the collisionless gyrokinetic equation,
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2�B�“B is the drift velocity for low-� toka-
mak plasmas with ��1, vE��E��b/B . In this article the
electrons are described by the drift-kinetic equations due to
their small gyro radii, hence ����� , etc., for electrons.

In the canonical momentum formulation,8 the parallel
canonical momentum p ���v ���(q� /m�)�A �� is used in-
stead of v � ,
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The ions are simulated using the usual � f method. De-
fine f i� f 0i�� f i with f 0� the Maxwellian distribution in p ��

„���m�(v��
2

�p ��
2 )/2…,

f 0��

n0�

�2��3/2v t�
3 e��� /T�. �3�

Here � f i evolves according to

d� f i
dt

��� v � i
�B�

B
�vE� •“ f 0i� �̇ i

� f 0i
�� i

, �4�

where �̇ i�� ivGi•“B�mip � i ṗ � i .
A fraction of the adiabatic part of the electrons perturbed

distribution is treated separately in the split-weight scheme.
Thus we write

f e� f 0e��ge�
� f 0e
��e

�h . �5�

Here we have generalized the split-weight scheme so that the
part of the distribution separated can be adjusted by a param-
eter �g . The original split-weight scheme1 corresponds to the
case with �g�1. If it turns out that the enhancement of time
step relies crucially on the explicit treatment of all the adia-
batic response (�g�1), this free parameter will be of little
use. We will address this issue in Sec. III when we perform
numerical tests of the split-weight scheme. We also note that
the adiabatic contribution associated with A � is not separated
from the electron distribution here, as has been proposed by
Lee. That separation will necessitate the calculation of
�A � /�t , and hence contradicts the purpose of the p � formu-
lation.

The distribution h evolves according to

dh
dt

��� v �e
�B�

B
�vE� •“ f 0e� �̇e

� f oe
��e

��ge� � ��

�t
�vGe•“� � � f oe

��e

��� vGe•“� �̇e
�

��e
� � f oe

��e
� . �6�

As can be seen from Eq. �6�, one need calculate the
quantity ��/�t in the split-weight scheme. It is possible to
calculate this quantity using a finite difference method.9 Fol-
lowing Manuilsky and Lee,1 we will derive a moment equa-
tion for �̇���/�t from the quasi-neutrality form of the gy-
rokinetic Poisson equation,10

n0i

qi
2

Ti
����̃ ���gn0e

e2

Te
�

�qi� � f i��R���x� dR dv�e� h dv. �7�

Taking the time derivative of Eq. �7�, using the continuity
form of the original gyrokinetic equation �1�, we obtain
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In Eq. �7� �̃ is defined as
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with ���k�k exp(ik•x). �̇ and �8 are similarly defined.
Equation �8� can be expressed in terms of � f i and h as
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The last two terms on the right-hand-side �RHS� of Eq. �10�
do not cancel each other due to the ion Larmor radius effect.
Ion contributions that are a factor of me /mi smaller than
corresponding electron terms are neglected in Eq. �10�.

Neglecting the contribution of ��ge� (� f oe /��e) to
parallel current, which is proportional to �A � , Ampere’s law
is

� �“�

2
�

�pe
2

c2
� A �

��0� qi� � f iv ���R���x� dR dv�e� hv � dv� . �11�

We note that in p �-formulation v � need be computed from p �

and A � , hence Eq. �11� contains terms of the form �n�A � ,
which is nonlinear and requires an iterative procedure for
solving Eq. �11�.5 In this article such nonlinear terms are
neglected. Equations �4�, �6�, �7�, �10�, and �11� complete the
p � formulation of the split-weight scheme.

For the comparison of simulations with dispersion rela-
tion in Sec. IV, we also provide the equations for the v �

formulation in a shearless slab. When v � is used as the co-
ordinate, f 0� is defined as Maxwellian in terms of v � and the
electron distribution function is still split as Eq. �5�. Evolu-
tion equations for � f i and h are trivially obtained. Linearly
the equation for �̇ is identical to Eq. �10� except that the A �

term on the right-hand side of Eq. �10� should be removed,
since f 0 does not carry a current. The �ps

2 /c2A � term is re-
moved from Ampere’s law due to the same reason. The main
difference between the two formulations is the appearance of
an equation for Ȧ � . This equation is derived from taking the
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time derivative of Ampere’s law and using the kinetic �1� to
eliminate � f � /�t . The result is, for a shearless slab,

� �“�

2
�

�pe
2

c2
� Ȧ �

���0“ �� qi� v �
2� f i��R���x� dR dv�e� v �

2h dv�
��0

e
me

��B�•�n0eT0e���1��g�“ ��� . �12�

Nonlinear terms have been neglected. Although f 0e does
not contribute to electric current, it contributes the term
�pe

2 /c2Ȧ � in the above equation. Again ion terms that are a
factor of me /mi smaller than the corresponding electron
terms are neglected.

III. IMPLEMENTATION

The p �-formulation of the split-weight scheme has been
implemented in a toroidal field-line-following flux-tube
geometry.11 The coordinates are defined by x�r�r0 , y
�(r0 /q0)q���) and z�q0R0� , with (r ,� ,�) the usual to-
roidal coordinates. r0 is the radius of the center of the flux-
tube, q(r) is the safety factor, and q0�q(r0). Unshifted cir-
cular flux surfaces are assumed. In the following we use � i as
the unit of length, � i /vTi as the unit of time, Ti /e� i as the
unit of electric field, and B0 as the unit of magnetic field. The
simulation domain (0,lx)�(0,ly)�(0,lz) is chosen such that
lz�2�q0R0 . Periodical boundary conditions are used in x
and y directions, while the toroidal boundary condition11 is
used in z.

A predictor–corrector scheme is used for evolving the
particle trajectories and field equations. After each predictor
or corrector step of particle pushing, the Poisson equation
and Ampere’s law, Eqs. �7� and �11�, are solved sequentially
using spectral methods. Once � and A � are available, Eq.
�10� can be solved similar to the Poisson equation. Using the
field-line-following coordinates, the second term on the RHS
of Eq. �10� is, in dimensionless units,

��g“� �
� f oe
��e

vGe dv

��g
2
R0

� ��

�x
sin ��

��

�y
�cos ��sz sin �� � . �13�

Terms nonlinear in � have been neglected. The last term on
the RHS of Eq. �10� can be expressed as, for q�e�1,
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with n0i�n0e�n0 , �n��(�n0 /�x)/n0 , b�„kx
2
�ky

2(1�sz
2)

�2kxkysz…/B(z)
2, sz�(r0 /q0)q�� . This quantity can be con-

veniently evaluated inside the Poisson solver where �kx ,ky
is

available.

For numerical comparison the v � formulation is also
implemented in a shearless slab geometry. In this case the
equation for �A � /�t , Eq. �12�, is solved in a way similar to
Ampere’s law.

IV. NUMERICAL STUDY OF THE SPLIT-WEIGHT
SCHEME

A. Shearless slab simulations

Consider a slab of plasma with constant equilibrium
magnetic field B�B0ẑ. Plasma density n0(x) and tempera-
ture T i0(x), Te0(x) are nonuniform in the x direction. Here
we assume T0i�T0e but allow different temperature gradi-
ents for electrons and ions. For the purpose of comparing
simulations with analytical results in detail, we provide be-
low the fully kinetic electromagnetic dispersion relation for
such a shearless slab,4

�k�

2 k �

�
�Mi�Me�k��

2 ����Ne�Ni��k��

2
�Li�Le�,

�15�

where ��v ti
2/vA

2 and vA
2

�B0
2/�0n0mi is the Alfvén velocity.

Other quantities in Eq. �15� are defined as the following:
Li�(���Ti)�0��Ti�* , Mi���0(1�� iZi)�( 3
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� ���0 (1 � � iZi) � (� 3

2�Ti�0 � �0 � �Ti�*) (1 � � iZi)
��Ti�0(

1
2 �� i

2
�� i

3Zi)� , Le�� , Me�1�(���Te/2
�1)�eZe(�e)��Te�e

2(1��eZe), Ne�� (�/k �) ��Te„
1
2

��e
2(1��eZe)…�(���Te/2�1)(1��eZe)� , �n��(dn0 /

dx)/n0 , �T���(dT0� /dx)/T0 , ���nky /� , �T�

��T�ky /� , �0��0(b)��0(k�

2
v ti
2/� i

2), �*��0�b(�0
��1), and k��

2
�1��o(b). ����/�2k �v t� and Z�

�Z(��) is the plasma dispersion function.
Equation �15� is solved numerically for �(k) and the

results are compared with simulations for ion-temperature-
gradient-driven �ITG� modes, electron drift waves, and Al-
fvén waves. The box size for the shearless slab simulations is
lx�ly�64, lz�3140; typically 524 288 particles are used.
The grid resolution is 64�64�32. For better comparison
with the dispersion relation only a single Fourier mode �in-
cluding its complex conjugates� is retained. All the simula-
tions are performed with q�e , T0i�T0e , and mi /me
�1837.

Figure 1 shows the measure mode frequencies versus �n
for ��10�4, �Ti�0.1, and �Te�0.01. The mode wave
number is kx�0.1, ky�0.3, and k ��0.002. Time step is
�t�4. The mode growth rates are plotted in Fig. 2. Simula-
tion results with both �g�1 �stars� and �g�0.1 �diamonds�
are shown, together with the solution of the dispersion rela-
tion. As �n increases, the dominant mode shifts from the ITG
mode to the drift wave. Near �n�0.05 both modes are un-
stable and the simulation nicely picks up the mode with
larger growth rate, as can be clearly seen from the observed
mode frequency. Good agreement between theory and simu-
lation is seen for the wave frequency and growth rate, except
in the case of �g�1 the growth rate of the drift wave sig-
nificantly deviates from that predicted by the dispersion re-
lation. Thus the choice �g�1, which corresponds to the
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original split-weight scheme proposed by Manuilskiy and
Lee,1 is not always optimal if accuracy is desired. However,
in the case of ITG modes, the choice �g�1 is appropriate.
The restriction on the time step depends on the choice of �g .
Numerical experiments show that, for the case with �n
�0.01, numerical stability requires that �t�10 (k �vTe�t
�0.9) for �g�1, �t�6 for �g�0.1, and �t�2.5 for �g
�0.

As will be seen later in the discussion of toroidal simu-
lations, the increase in time step due to the split-weight
scheme is more dramatic in nonlinear simulations where a
large number of Fourier modes are retained. Here we sum-
marize the following observations regarding the effect of the
split-weight scheme on the time step: �a� the fact that a small
�g allows a large increment in �t indicates that, as far as the
time step is concerned, it is not crucial for the explicit term
in Eq. �5� to catch the full adiabatic response �e.g., �g�1 for
��0). �b� The allowed maximal time step without causing
numerical instabilities increases with � . In some cases, the
condition �A�t�1 for numerical stability2,1 (�A is the Al-
fvén wave frequency� can be violated without causing nu-
merical instability. �c� The Courant condition k �vTe�t�1
can indeed be violated while the mode frequency and growth
rate of interest are still accurately calculated. The observa-
tions �b� and �c� can be demonstrated for the ITG mode in
Figs. 1 and 2 with ��4�10�4, �g�1, and �n�0.01. The
frequency and growth rate of the ITG mode are little changed
by the small � . Simulation with a time step of k �vTe�t
�1.37 (�A�t�1.6) gives ��(�3.3�10�3,2.3�10�3), in
good agreement with the dispersion relation. However, as is
expected when �A�t�1, the Alfvén wave is not correctly
simulated with such a large time step. Thus in the presence
of both the Alfvén wave and the drift instabilities, the split-
weight scheme allows us to sacrifice the accuracy of the
Alfvén wave for the efficient simulation of the drift waves, if
this is desired.

The deviation between the dispersion relation and simu-

lation results at large �g is indicative of a more general prob-
lem. In conventional � f simulations all the electron density
response is computed from � f . This density response, when
computed from � f , is subject to the effect of finite particle
size and finite grid size,2 regardless of whether an electron is
adiabatic or nonadiabatic. However, in the split-weight
scheme, the contribution of the part of distribution
��ge�� f oe /�� to the electron density, �gn0e�/T0 , is
known analytically in the Poisson equation, Eq. �7�, without
being subject to the effect of finite particle and grid size, as is
the case for h, the rest of the distribution. We believe that it
is such unequal treatments of different parts of the distribu-
tion that causes the deviation between theory and simulations
at large �g . In this regard the terms proportional to �pe

2 /c2 in
Eq. �11� for the p �-formulation and in Eq. �12� for the v �

formulation are similar to the �g term in the Poisson equa-
tion, and hence can be expected to cause inaccuracy at large
�mi /me��pe

2 /c2.
Figure 3 shows the simulation results for the Alfvén

wave frequency at different � . In this case �n��Ti��Te
�0, �g�1, and �t�1. Results from both the p �-formulation
�diamonds� and the v �-formulation �stars� are shown. The
frequency at ��0 is the electrostatic Alfvén wave12 given
by �H

2
�(k �

2/k�

2 )v te
2 . The results with p �-formulation agree

well with the dispersion relation for �mi /me�2. However,
at large � significant deviation is seen. The results from
v �-formulation deviate from the dispersion relation even
more. This observation at large � was previously seen in
one-dimensional gyrokinetic particle simulations.5 It was
also observed in Vlasov simulations13 using the
p �-formulation, where the finite grid effects are also present,
although no particles are used. It had been suggested that one
needs to resolve the magnetic skin depth, �s��me /�mi, to
correctly reproduce any finite � effect at large � .

Finite � effects are shown in Fig. 4 where the frequen-
cies and growth rates of the drift wave are plotted versus � .
In this case lx�ly�64, lz�6280, and mode wave number is
kx�0.2, ky�0.4 and k ��0.001. Other parameters are �Ti

FIG. 1. Linear simulation results of mode frequency for both drift waves
�upper� and ITG modes �lower� agree well with solutions of the dispersion
relation �solid line�. Diamonds are results of simulations using p � formula-
tion, stars are results of simulations using v � formulation.

FIG. 2. Mode growth rates versus density gradient. The left curve is for ITG
modes, right for drift waves. For the drift wave branch, results of simula-
tions using �g�0.1 agree better with the dispersion relation than that using
�g�1.
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��Te�0, �n�0.1, �g�0.2, and �t�4. Finite � stabiliza-
tion can be observed, but the difference between simulation
results and the dispersion relation is apparent.

B. Toroidal simulations

It is clear from the above discussion that finite � effects
in a typical tokamak plasma with �mi /me�1 cannot be ad-
equately simulated using the electromagnetic simulation
scheme presented here, regardless of whether the split-
weight scheme is used. However, within the low-� regime
�mi /me�1 the split-weight scheme does afford us the ca-
pability of simulating the full electron dynamics in a toroidal
geometry, including nonadiabatic effects of the passing elec-
trons and the trapped electron effects. The advantage of the
split-weight scheme over the conventional � f method is
more clearly seen in the nonlinear simulations where a large

number of Fourier modes are present. We have seen previ-
ously that for a particular case the time step is enhanced from
k �v te�t�0.25 without the split-weight scheme to k �v te�t
�1 with the split-weight scheme. This result of single mode
simulation is somewhat misleading. In our nonlinear simula-
tions, both in shearless slab geometry and in toroidal geom-
etry, we have observed nonlinear saturation with a typical
time step of �t� i�1 using the split-weight scheme,
whereas without the split-weight scheme the simulation is
numerically unstable even with a time step �10 times
smaller. In these nonlinear simulations all the modes with
k��1 are retained, while in the parallel direction the digital
filtering is applied to the particle density and parallel current.

We first study the ITG instability in a torus with the
‘‘DIII-D14 Base Case’’ parameters: R0�Ti�6.9, R0�n�2.2,
Ti�Te , r0 /R0�0.18, q0�1.4, and ŝ�(r0 /q0)(dq/dr)
�0.78. We choose �Te�0. The size of the flux tube is lx
�ly�lz�64� i�64� i�2�q0R0 , and grid resolution is 64
�64�32. Particle number is 1 048 576. Although the real-
istic plasma � is not accessible, we find, surprisingly, that a
small � (��10�4) allows us to use a relatively large time
step, �t� i�5 for �g�0.3, compared with the requirement
�t� i�1 for ��0. This might be due to the large �H mode
frequency at ��0. �g�1 is chosen since we are interested in
cases where accurate electron dynamics is desired. Figure 5
shows the evolution of the ion energy flux. Results from both
kinetic electron simulation and simulation with adiabatic
electrons are shown. The linear growth rate estimated from
the field energy is �Ln /cs�0.15, about 70% increased from
the adiabatic electron result. The steady-state ion energy flux
cannot be determined as accurately in the kinetic electron
simulation as in the adiabatic run. If the ion heat diffusivity
is taken to be 0.022cs� i , it is increased from that of the
adiabatic run by more than a factor of 5. This result indicates
that the effect of nonadiabatic electrons on the ion transport
is not negligible. On the other hand, the particle flux, which
is ambipolar intrinsically due to the quasi-neutrality condi-

FIG. 3. Alfvén wave frequency vs � . At large � , simulation results differ
from the dispersion relation.

FIG. 4. Mode frequency �upper� and growth rate �lower� vs � for the drift
wave. Finite � stabilization is difficult to see in simulations when
�mi /me�1.

FIG. 5. Evolution of ion heat diffusivity for the DIII-D Base Case param-
eters. The maximum growth rate increases from the adiabatic simulation by
70%, the saturated ion flux is increases by more than five times.
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tion, is negligible compared with the ion energy flux for this
set of parameters, as would be implied by adiabatic elec-
trons. The electron energy flux is also negligible in this case.

As we increase density gradient from the Base Case
value to �n� i�0.01 (� i�0.69) the instability shifts from
predominantly ion driven to electron driven, and we can ob-
serve significant particle flux and electron energy flux. Fig-
ure 6 shows the evolution of the particle flux and the energy
flux of both species. Other parameters are the same as in Fig.
5 except �Te� i�0.005. The simulation with adiabatic elec-
trons show that the plasma is stable as expected. The insta-
bility observed is clearly driven by nonadiabatic electrons, as
can be seen from examining the trapped particle contribution
of the particle flux, which dominates the passing electrons.

V. CONCLUSION

We have developed an electromagnetic, gyrokinetic ion,
and drift-kinetic electro-particle simulation model in three-
dimensional toroidal field-line-following geometry, using a
generalized split-weight scheme1 and the parallel canonical

momentum formulation.8,5 The original split-weight scheme1

has been modified so that the adiabatic part of the particle
distribution can be varied. This helps improve accuracy in
drift wave simulations. We have performed detailed com-
parisons between shearless slab simulations and the linear
dispersion relation for kinetic Alfvén waves, ITG modes, and
drift waves. It is shown that the split-weight scheme can
greatly increase the time step in simulations. Most impor-
tantly, it now makes it possible for nonlinear toroidal simu-
lation of tokamak plasma microturbulence with full electron
dynamics keeping the full k � and k� wave spectrum. We
have also begun to quantify inaccuracy problems at large � ,
which have been previously observed in electromagnetic
simulations with finite spatial resolution,5,13 and have shown
errors that persist regardless of which formulation (v � or p �)
is used. More work is needed to address the moderate �
plasmas where both fully kinetic electrons and electromag-
netic effects are important.
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FIG. 6. As the density gradient is increased from the Base Case so that � i
�0.69, trapped electron driven instability is observed. Significant particle
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